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discuss its deviations from Poisson statistics. The slope of the limiting LNV is found to be larger than that of
Poisson statistics when the individual components have a certain accumulation. This property agrees with the
result from the semiclassical periodic-orbit theory that is applied to a system with degenerate torus actions
�D. Biswas, M. Azam, and S. V. Lawande, Phys. Rev. A 43, 5694 �1991��.
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I. INTRODUCTION

Study of energy level statistics has played an important
role in elucidating the universal properties of quantum sys-
tems, which in the semiclassical limit, reflect regular and
chaotic features of classical dynamics. Berry and Tabor con-
jectured that the eigenenergy levels of a quantum system,
whose classical dynamical system is integrable, have the
same fluctuation property as uncorrelated random numbers
from a Poisson process, and thus are characterized by Pois-
son statistics �1�. This conjecture is in contrast with the con-
jecture of Bohigas, Giannoni, and Schmit, which assert that
Gaussian orthogonal ensemble �GOE� or Gaussian unitary
ensemble �GUE� statistics based on random matrix theory
�RMT� are applicable to the fluctuation property of energy
levels of a quantum system whose classical dynamical sys-
tem is fully chaotic �2�. These contrasting conjectures have
been examined using various statistical observables, e.g., the
nearest-neighbor level-spacing distribution �NNLSD� and the
level number variance �LNV� �3�.

The NNLSD P�S� is the observable most commonly used
to study short-range fluctuations in a spectrum. For eigenen-
ergy levels on the unfolded scale �4�, this observable is de-
fined as the probability density of finding a distance S be-
tween adjacent levels. In Poisson statistics, it is characterized
by the exponential distribution P�S�=e−S; on the other hand,
in GOE or GUE statistics, it approximates the Wigner distri-
bution very well �3�.

The LNV �2�L� is the observable commonly used to
study correlations between pairs of levels, which character-
izes long-range fluctuations in a spectrum. It is defined as the
average variance of the number of levels in an energy inter-
val containing an average of L levels. On the unfolded scale,
this interval is equivalent to an interval of length L, and the
LNV is thus defined as

�2�L� = ��N�� + L� − N��� − L�2� , �1.1�

where N��� is the number of eigenenergy levels below �, and
the angle brackets �¯� represent the average over the value
of �. In Poisson statistics, the LNV is equal to the number
itself �i.e., �Poisson

2 �L�=L�; on the other hand, in RMT, in
which �=1 and 2 correspond to the GOE and GUE level
statistics, respectively, the LNV increases logarithmically
with L �i.e., ��

2�L���2 /��2�ln�2�L�� �3�. According to Ber-
ry’s semiclassical theory �5�, the LNV of a quantum system
with f degrees of freedom should display these universal
statistics in the region L�Lmax��−�f−1� as a consequence of
the uniform distributed property of periodic orbits in the
phase space �6�. In the semiclassical limit, in which the
Planck constant tends to zero ��→0�, one expects to observe
the universalities for all L�0 in systems with f �2.

There are many works examining the Berry-Tabor conjec-
ture in classically integrable quantum systems �5,7–18�. Al-
though the mechanism that supports this conjecture remains
to be clarified; the statistical property of eigenenergy levels
to be characterized by Poisson statistics is now widely ac-
cepted as a universal property of generic integrable quantum
systems in the semiclassical limit.

One possible mechanism producing Poisson statistics has
been proposed by Makino et al. �19�, based on the Berry-
Robnik approach �20�. We briefly review the outline below:
For an integrable system, individual orbits are confined in
each inherent torus whose surface is defined by holding its
action variable constant, and the whole region of the phase
space is densely covered with invariant tori. In other words,
the phase space consists of infinitely many regions, which
have infinitesimal volumes in Liouville measure. Because of
the suppression of quantum tunneling in the semiclassical
limit, the Wigner functions of quantal eigenstates are ex-
pected to be localized in the phase space region explored by
a typical trajectory �21,22�, and to form independent compo-
nents. For a classically integrable quantum system, the
Wigner function localizes on the infinitesimal region in*makino@tokai-u.jp
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�→0 and tends to a � function on a torus that is designated
by quantum numbers �23�. Then, the eigenenergy levels can
be represented as a statistically independent superposition of
infinitely many components, each of which gives an infini-
tesimal contribution to the level statistics. Therefore, if the
individual spectral components are sparse enough, one
would expect Poisson statistics to apply here, as a result of
the law of small numbers �24�.

The statistical independence of spectral components is as-
sumed to be justified by the principle of uniform semiclassi-
cal condensation of eigenstates in the phase space and by the
lack of their mutual overlap, and thus, can only be expected
in the semiclassical limit �22,25�. This mechanism was intro-
duced as a basis for the Berry-Robnik approach to investi-
gate the relation between the phase space geometry and the
formation of energy level sequence in a generic mixed quan-
tum system, whose classical dynamics is partly regular and
partly chaotic �20�. The validity of the Berry-Robnik ap-
proach is confirmed by numerical computations for the
mixed quantum systems in the extremely deep semiclassical
region �26,27�, which is called the Berry-Robnik regime
�28�.

Based on this view, Makino and Tasaki investigated the
short-range spectral statistics of classically integrable sys-
tems �19�. They derived the cumulative function of NNLSD,
i.e., M�S�=�0

SP�x�dx, is derived in the limit of infinitely
many components, which is characterized by a single mono-
tonically increasing function 	̄�0;S� of the nearest level
spacing S as

M	̄�S� = 1 − �1 − 	̄�0;S��exp	− 

0

S

�1 − 	̄�0;x��dx� .

�1.2�

The function 	̄�0;S� classifies M	̄�S� into three cases: Case
1, Poisson distribution M	̄�S�=1−e−S for ∀S�0 if 	̄�0;
+
�=0; case 2, asymptotic Poisson distribution, which con-
verges to the Poisson distribution for S→ +
, but possibly
not for small spacings S if 0�	̄�0; +
��1; and case 3,
sub-Poisson distribution, which converges to 1 for S→ +

more slowly than does the Poisson distribution, if 	̄�0;
+
�=1. Therefore, the Berry-Robnik approach when applied
to classically integrable quantum systems, admits deviations
from Poisson statistics.

Cases 2 and 3 are possible when the eigenenergy levels of
individual components show a singular NNLSD result from
strong accumulation �19� �see also Sec. III of the present
paper�, which is expected when the classical dynamical sys-
tems have a spatial symmetry �1,11,14,17,18,29–32� or a
time-reversal symmetry �33–35�. One possible example is a
rectangular billiard with a rational ratio of squared sides
�1,11,18,31,32�. These results suggest the existence of a new
statistical law different from Poisson statistics in the strongly
degenerate quantum systems, and raises the question as to
whether similar behaviors appear in the two-point spectral
correlation.

Deviation from Poisson statistics, resulting from the sym-
metry, is also exhibited within the framework of the periodic-
orbit theory �36�. Based on the semiclassical theory of Berry

and Tabor �7�, Biswas, Azam, and Lawande investigated the
LNV for classically integrable systems with degeneracy in
orbit actions �32�. They showed that the slope gav�L� of the
LNV �2�L�=gav�L�L is described by the average degeneracy
of actions of the periodic orbits, which for the degenerated
quantum systems, is greater than 1, and it is the slope of the
variance of Poisson statistics. This result leads to the possi-
bility that the degeneracy of actions, induced by the symme-
try, could be an essential factor for the singularity of indi-
vidual spectral components that yields cases 2 and 3. This
possibility is confirmed by examining the properties of LNV
for cases 2 and 3.

In this study, extending the theory of Makino and Tasaki
�19�, we investigate the LNV �2�L� of quantum systems
whose energy levels consist of infinitely many independent
components, and show that the non-Poisson limits �cases 2
and 3� are possibly observed also in the long-range spectral
fluctuations.

Based on the Berry-Robnik approach, the overall LNV is
derived as follows: We consider a system whose classical
phase space is decomposed into N disjoint regions that give
the distinct spectral components. The Liouville measures of
these regions are denoted by �n�n=1,2 ,3 , . . . ,N�, which sat-
isfy �n=1

N �n=1. Let E�k ;L�, k=0,1 ,2 , . . . be the distribution
function, which denotes the probability to find k levels in an
interval �0,L� �3,37,38�. The LNV �2�L� is expressed by
E�k ;L� as

�2�L� = �
k=0

+


�k − L�2E�k;L� . �1.3�

Let P�k ;S�, k=0,1 ,2 , . . ., be the level-spacing distribution,
which denotes the probability density to find k levels in an
interval of length S beginning at an arbitrary level �i and
ending at the level �i+k+1. P�k ;S� is related to E�k ;L� as

P�k;L� =
�2

�L2�
j=0

k

�k − j + 1�E�j ;L� �1.4�

and

E�k;L� = 

L

+


dx

x

+


�P�k;S� − 2P�k − 1;S� + P�k − 2;S��dS ,

�1.5�

where P�j�0;S�=0 �3,37,38�. Equations �1.4� and �1.5� are
known as the formulas in the theory of point process, and are
derived as corollaries of the Palm-Khinchin formula �39�.
The NNLSD, which was expressed by P�S� at the beginning
of this section, is the special case with k=0.

When the entire sequence of energy levels is a product of
statistically independent superposition of N subsequences,
E�k ;L� is decomposed into those of subsequences, en�k ;L� as
�3�

EN�k;L� = �
�n=1

N kn=k


n=1

N

en�kn;�nL� , �1.6�

where en satisfies the normalization conditions
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�
k=0

+


en�k;�nL� = 1 �1.7�

and

�
k=0

+


ken�k;�nL� = �nL . �1.8�

In terms of normalized level-spacing distribution pn�k ;S� of
the subsequence, en�k ;L� is specified as

en�k;L� = �n

L

+


dx

x

+


�pn�k;S� − 2pn�k − 1;S�

+ pn�k − 2;S��dS , �1.9�

where pn�j�0;S�=0, and pn�k ;S� satisfies the normaliza-
tions



0

+


pn�k;S�dS = 1 �1.10�

and



0

+


Spn�k;S�dS =
k + 1

�n
. �1.11�

Note that in general, the individual components are not
always unfolded automatically even when the overall spec-
trum is unfolded. However, in a sufficiently small interval
�� ,�+��, each spectral component obeys the same scaling
law �see Appendix of Makino et al. �19�� and thus is un-
folded automatically by an overall unfolding procedure. In
the Berry-Robnik approach, Eq. �1.6� relates the level statis-
tics in the semiclassical limit with the phase space geometry.

In most general cases, the individual components might
have degeneracy of levels that lead to singular level spacing
distributions. In such a case, it is convenient to use its cumu-
lative distribution function 	n�k ;S�,

	n�k;S� = 

0

S

pn�k;x�dx . �1.12�

This function satisfies

	n�k − 1;S� � 	n�k;S� for all k � 1 and for all S � 0,

�1.13�

and the normalization condition

�
k=0

+


�	n�k − 1;S� − 	n�k;S�� = 0, �1.14�

with 	n�j=−1;S�=0, since fn�k ;S�,

fn�k;S� = �	n�k − 1;S� − 	n�k;S� , k � 1,

1 − 	n�0;S� , k = 0
� �1.15�

denotes the probability to find k levels in an interval of
length S beginning at an arbitrary level, and obviously satis-
fies, from the definition of this function, the conditions
fn�k ;S��0 and �k=0

+
 fn�k ;S�=1.

In addition to Eq. �1.6�, we introduce the following two
assumptions that were introduced in Ref. �19�.

Assumption (i). The statistical weights of independent re-
gions vanish uniformly in the limit of infinitely many re-
gions,

max
n

�n → 0 as N → + 
 . �1.16�

Assumption (ii). For k=0,1 ,2 , . . ., the weighted mean of the
cumulative distribution of energy spacing, namely,

	�k;x� = �
n=1

N

�n	n�k;x� �1.17�

converges as N→ +
 to 	̄�k ;x�,

lim
N→+


	�k;x� = 	̄�k;x� , �1.18�

where the convergence is uniform on each closed interval,
0�x�S. In the Berry-Robnik approach, the statistical
weights of individual components are the phase volumes
�Liouville measures� of the corresponding invariant regions.

Under the assumptions �i� and �ii�, Eqs. �1.3� and �1.6�,
we obtain the overall LNV in the limit N→ +
,

�	̄
2 �L� = L + 2


0

L

�
k=0

+


	̄�k;S�dS . �1.19�

When 	̄�k ;S�=0 for all k, the LNV of the whole energy
sequence reduces to �Poisson

2 �L�=L. This condition is ex-
pected when the individual components are sufficiently
sparse. In general, we expect 	̄�k ;S��0, which corresponds
to a certain accumulation of the levels of individual compo-
nents. In this case, the LNV of the whole energy sequence
deviates from �Poisson

2 �L� in such a way that the slope of the
variance is greater than 1.

The present paper is organized as follows. The limiting
LNV �1.19� is derived from Eqs. �1.3� and �1.6�, and as-
sumptions �i� and �ii� in Sec. II. In Sec. III, the property of
the limiting LNV is analyzed for the cases 1–3, wherein the
deviations from Poisson statistics are clearly observed in
cases 2 and 3. We present a numerical analysis for the rect-
angular billiard that shows deviations from Poisson statistics
in Sec. IV. In the concluding section, we discuss some rela-
tionships between our results and other related works.

II. LIMITING LEVEL NUMBER VARIANCE

In this section, by using Eqs. �1.6� and �1.3�, and assump-
tions �i� and �ii� introduced in Sec. I, we derive the limiting
LNV,

�	̄
2 �L� = L + 2


0

L

�
k=0

+


	̄�k;S�dS , �2.1�

in the limit of infinitely many components N→ +
.
First, we rewrite Eq. �1.3� in terms of the function en, and

decompose it into the LNV �n
2 of individual components,
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�N
2 �L� = �

k=0

+


�k − L�2 �
�n=1

N kn=k


n=1

N

en�kn;�nL� �2.2�

=�
n=1

N

�
k=0

+


�k − �nL�2en�k;�nL� � �
n=1

N

�n
2��nL� , �2.3�

where we have used the properties �k=0
+
 EN�k ;L�=1,

�k=0
+
 kEN�k ;L�=L, and

�
k=0

+


k2EN�k;L� = �
n=1

N

�
kn=0

+


kn
2en�kn;�nL� + L2 − �

n=1

N

��nL�2,

�2.4�

which follow from Eqs. �1.7� and �1.8�, and the relationships
k=�n=1

N kn and �n=1
N �n=1 �see also the Appendix�. The func-

tions en�k ;�nL� in the above equation are rewritten in terms
of the cumulative level-spacing distribution functions
	n�k ;S� of individual components,

en�k;�nL� =�
− �n


L

+


dS�	n�k;S� − 2	n�k − 1;S� + 	n�k − 2;S�� , k � 2,

− �n

L

+


dS�	n�1;S� − 2	n�0;S� + 1� , k = 1,

�n

L

+


dS�1 − 	n�0;S�� , k = 0,
� �2.5�

=�
�n


0

L

dS�	n�k;S� − 2	n�k − 1;S� + 	n�k − 2;S�� , k � 2,

�n

0

L

dS�	n�1;S� − 2	n�0;S� + 1� , k = 1,

1 − �n

0

L

dS�1 − 	n�1;S�� , k = 0,
� �2.6�

where Eq. �2.6� follows from Eq. �1.11�, integration by parts
and the following limits which result from the existence of
the average:

lim
S→+


S�	n�k;S� − 2	�k − 1;S� + 	n�k − 2;S�� = 0, k � 2,

lim
S→+


S�	n�1;S� − 2	�0;S� + 1� = 0, k = 1,

lim
S→+


S�1 − 	n�0;S�� = 0, k = 0. �2.7�

Then, �n
2��nL� is described in terms of 	n�k ;S� as

�n
2��nL� = �

k=0

+


k2en�k;�nL� − �n
2L2

= �n

0

L

dS�
k=1

+


�2k + 1��	n�k − 1;S� − 	n�k;S��

+ �n

0

L

�1 − 	n�0;S��dS − �n
2L2 = �nL

+ 2

0

L

dS�
k=0

+


�n	n�k;S� − �n
2L2, �2.8�

where we have used Eq. �1.14� and the relation

�
k=0

+


��k − 1�	n�k − 1;S� − k	n�k;S�� = 0 �2.9�

with 	n�−1;S�=0. Therefore, in the limit N→ +
, we have
the convergence

�	̄
2 �L� = lim

N→+

�
n=1

N

�n
2��nL� = L + 2


0

L

dS�
k=0

+


	̄�k;S� ,

�2.10�

where the limit �2.10� follows from assumption �ii� and the
following property results from assumption �i�:

�
n=1

N

�n
2 � max

n
�n�

n=1

N

�n = max
n

�n → 0. �2.11�

We note the spectral rigidity 3�L�, which was introduced
by Dyson and Mehta �40�. In combination with the LNV, this
quantity has played a major role in the study of the long-
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range spectral statistics. According to Pandey �41� and Eq.
�2.10�, the spectral rigidity is described in terms of 	̄�k ;S� as

3,	̄�L� =
2

L4

0

L

dx�L3 − 2L2x + x3��	̄
2 �x�

=
L

15
+

4

L4

0

L

dx�L3 − 2L2x + x3�

0

x

dS�
k=0

+


	̄�k;S� .

�2.12�

III. PROPERTIES OF LIMITING LEVEL NUMBER
VARIANCE

We analyze the slope of the limiting LNV

g�L� =
1

L
�	̄

2 �L� = 1 +
2

L



0

L

dS�
k=0

+


	̄�k;S� , �3.1�

which has the following convergence:

lim
L→+


g�L� = 1 + 2�
k=0

+


	̄�k; + 
� � 1 + 2	̄�0; + 
� .

�3.2�

Since 	n�k ;S� is monotonically increasing for S�0, mono-
tonically decreasing for k=0,1 ,2 , . . ., and 0�	n�k ;S��1,
	̄�k ;S� has the same properties and is bounded by 	̄�0;
+
� as

0 � 	̄�k;S� � 	̄�0;S� � 	̄�0; + 
� � 1, �3.3�

where 	̄�0; +
� classifies the cumulative NNLSD �1.2� into
three cases: Case 1, the Poisson distribution if 	̄�0; +
�=0;
case 2, the asymptotic Poisson distribution if 0�	̄�0; +
�
�1; and case 3, the sub-Poisson distribution if 	̄�0; +
�
=1.

Then, the property of the limiting LNV is evaluated for
cases 1–3 as follows:

Case 1, 	̄�0; +
�=0: The limiting LNV �	̄
2 �L� agrees

with the LNV of Poisson statistics: �Poisson
2 �L�=L. Note that

this condition is equivalent to �k=0
+
 	̄�k ;S�=0 since 	̄�k ;S� is

monotonically increasing for S and decreasing for k.
Case 2, 0�	̄�0; +
��1: �	̄

2 �L� possibly deviates from
�Poisson

2 �L� in such a way that the slope of the limiting LNV
is 1 at L=0, increases monotonically with L, and approaches
a number 1+2	̄�0; +
� or more as L→ +
.

Case 3, 	̄�0; +
�=1: �	̄
2 �L� possibly deviates from

�Poisson
2 �L� in such a way that the slope of the limiting LNV

is 1 at L=0, increases monotonically with L, and approaches
a number 3 or more as L→ +
.

One has case 1 if the NNLSD of individual components
are derived from the scaled distribution functions �n�0;S� as

	n�0;S� = �n

0

S

�n�0;�nx�dx , �3.4�

where �n�0;�nS�= pn�0;S� /�n and satisfy



0

+


�n�0;x�dx = 1, 

0

+


x�n�0;x�dx = 1, �3.5�

and are uniformly bounded by a positive constant
D : ��n�0;S���D�1�n�N�. Indeed, the following holds:

�	�0;S�� � �
n=1

N

�n
2


0

S

��n�0;�nx��dx � DS�
n=1

N

�n
2

� DS max
n

�n�
n=1

N

�n → 0 � 	̄�0;S� . �3.6�

Such a bounded condition is possible when the individual
spectral components are sparse enough.

In general, one may expect cases 2 or 3 with 	̄�0;S��0,
which corresponds to strong accumulation of energy levels,
leading to a singular NNLSD of the individual components.
Such accumulation is expected to arise from the symmetry of
the system. In the next section, we will analyze the LNV of
the rectangular billiard systems which is known to deviate
from Poisson statistics.

IV. RECTANGULAR BILLIARD SYSTEM

We present our results on the various statistical measures
discussed in the preceding section for a rectangular billiard
system whose spectral statistics has been precisely analyzed
in a number of works �1,5,11,15,18,19,31,32�. The eigenen-
ergy levels of this system are given by

�n,m = n2 + �m2, �4.1�

where n and m are positive integers, and � is denoted by the
lengths of two sides a and b as �=a2 /b2. The unfolding
transformation ��n,m�→ ��̄n,m� is carried out by using the
leading Weyl term of the integrated density of states, N���,
as

�̄n,m = N��n,m� =
�

4��
�n,m. �4.2�

Berry and Tabor observed that the NNLSD of this system
possibly deviates from Poisson statistics when � is rational
�1�. In this paper, we study irrational cases in addition to a
rational case ��=1� that are described by a finite continued
fraction of the golden mean ��5+1� /2,

� = 1 +
1

1+

1

1+
¯

1

1+

1

1 + �
= �1;1,1, . . . ,1,1 + �� ,

�4.3�

with an irrational truncation parameter �� �0,1�.
Figure 1 shows the plots of the LNV �2�L� for � corre-

sponding to the �a� 25th, �b� eigth, and �c� fourth approxima-
tions of the golden mean, and �d� �=1. Our analysis is valid
in the region L�Lmax, where Lmax=���̄nm�−1/4 for the rect-
angular billiard �5,15�. We used energy levels �̄n,m� �4000
�107 ,4001�107�, which correspond to Lmax�3.1�104.
The numerical computation was carried out using a double
precision real number operation. When the continued frac-
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tion is close to the golden mean, �2�L� is well approximated
by �Poisson

2 �L�=L �plot �a��. On the other hand, in cases in
which the continued fractions are far from the golden mean,
�2�L� clearly deviates from �Poisson

2 �L� �plots �b�–�d��.
Figure 2 shows the slope g�L� of the LNV for the four

values of � corresponding to the plots �a�–�d� in Fig. 1.
When �2�L� is well approximated by �Poisson

2 �L�, the slope
g�L� is 1 �plot �a��. Since �k=0

+
 	̄�k ;S�=0 is equivalent to
	̄�0;S�=0, this result corresponds to case 1 given in the
preceding section �see also Eq. �3.1��. In the case in which
�2�L� deviates from �Poisson

2 �L�, the slope g�L� is 1 at L=0
and increases monotonically with L �plots �b�–�d��. In the
limit of L→ +
, plot �b� approaches a number less than 3
and this result clearly corresponds to case 2, while plots �c�
and �d� approach numbers greater than 3 and these results
correspond to case 2 or 3.

In order to clarify the attribute of plots �c� and �d�, we
consider

	̃�S� = 1 −
1 − M�S�

1 − 

0

S

�1 − M�x��dx

�4.4�

that is obtained by the cumulative NNLSD M�S�
=�0

SP�0;x�dx. The function 	̃�S� is equivalent to 	̄�0;S� in
the semiclassical limit �→ +
.

Figures 3�a�–3�d� show −ln�1−M�S�� for the four values
of � corresponding to the plots �a�–�d� in Figs. 1 and 2,
respectively. The dotted line in each figure corresponds to the
cumulative Poisson distribution MPoisson�S�=1−exp�−S�.
Plots �a�–�d� in Fig. 4 show 	̃�S� for the four values of �
corresponding to Figs. 3�a�–3�d�, respectively. When �2�L�
approximates �Poisson

2 �L�, M�S� fits MPoisson�S� very well
�Fig. 3�a��. In this case, 	̃�S� is obviously 0 �plot �a� in Fig.
4�. In the case that �2�L� deviates from �Poisson

2 �L�, M�S� for
small value of S clearly deviates from MPoisson�S� �Figs.
3�b�–3�d��. However, for large value of S, it approaches a
line whose slope is 1 �see the dashed line in Figs. 3�b�–3�d��.
In these cases, 	̃�S� in S→ +
 approaches a number 	̃�+
�
such that 0�	̃�+
��1 �plots �b�–�d� in Fig. 4�. Therefore,
plots �b�–�d� correspond to case 2.

For the rectangular billiard in the finite energy region, we
have not yet succeeded in observing case 3. This case is
expected to arise in a square billiard ��=1� in the high en-
ergy limit where a stronger accumulation of levels is gener-
ated. Based on the number-theoretical result of Landau �42�,
Connors and Keating have proved that the eigenenergy levels
�n,m of square billiard show a logarithmic increase in the
mean degeneracy of levels as �→ +
, which is described as

1 − M�+ 0� �
4

�

C2

�ln �
→ 0, �4.5�

where C2 converges to give C2�0.764 �11�. The above limit
corresponds to a � function of NNLSD, P�S�=��S�, and is
consistent with 	̄�0;S= +0�=lim�→+
 M�+0�=1, which indi-
cates an extremely slow approach to case 3 in �→ +
.

Figure 5 shows the cumulative NNLSD M�S� for �=1.
This function is not smooth at the level spacings separated
by a step � /4 �1�, which correspond to accumulation of lev-
els. Note that M�+0��0 due to the degeneracy at S=0. Since
	̃�+0�=M�+0��0, this degeneracy at S=0 is identified also
in Fig. 4. As the eigenenergy levels become higher, M�+0�
increases monotonically and approaches 1. In the limit �→
+
 where M�+0�= 	̄�0,S= +0�=1, all steps except the step
at S=0 are suppressed since M�S� is monotonically increas-
ing for S�0.

Figure 6 shows 1−M�+0� vs 4C2 /��ln � for various en-
ergy ranges. Although we are not yet far enough in the high
energy region where 1−M�+0�=1− 	̃�+0��1, the agree-
ment between them is very good, and is better as �→ +
.
Therefore, the extremely slow convergence to case 3 is well
reproduced by a numerical computation. The almost same
results for �=22 /21 have already been reported by Robnik
and Veble �18�.

FIG. 1. Level number variance �2�L� of the rectangular billiard
systems for �a� 25th, �b� eighth, �c� fourth approximations of �
= ��5+1� /2, and �d� �=1. The solid line denotes the LNV of Pois-
son statistics, �Poisson

2 �L�=L. We used energy levels �̄n,m� �4000
�107 ,4001�107�. The total numbers of levels are �a� 10 000 457,
�b� 10 000 428, �c�10 000 266, and �d� 10 000 162. The truncation
parameters � are �a� ��10−9 �b� � /3�10−7, and �c� ��10−9.

FIG. 2. Slope of the level number variance, g�L�=�2�L� /L, for
�a� 25th, �b� eighth, �c� fourth approximations of �= ��5+1� /2, and
�d� �=1. The solid line, g�L�=1, corresponds to Poisson statistics.
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V. CONCLUSION AND DISCUSSION

Based on the approach of Berry and Robnik, we have
investigated the energy level statistics of classically inte-
grable quantum system and discussed its deviations from
Poisson statistics. In the Berry-Robnik approach, individual
eigenstates localizing on the different phase space regions

provide mutually independent contributions to the statistics
of energy levels in the semiclassical limit. Since the phase
space of integrable system is densely covered with invariant
tori, the eigenfunctions of the classically integrable quantum
system are localized on the regions that have infinitesimal

S S
FIG. 3. Function −ln�1−M�S�� for �a� 25th, �b� eighth, �c� fourth approximations of �= ��5+1� /2, and �d� �=1. The dotted line

corresponds to the cumulative Poisson distribution M�S�=1−e−S.

FIG. 4. Parameter function 	̃�S� for �a� 25th, �b� eighth, �c�
fourth approximations of �= ��5+1� /2, and �d� �=1. The solid
line, 	̃�S�=0, corresponds to the Poisson statistics.

FIG. 5. Cumulative NNLSD M�S� for �=1. We used 999 844
levels �̄n,m� �40�106 ,41�106� for plot �A�, 10 001 872 levels
�̄n,m� �4 000 000�107 ,4 000 001�107� for plot �B�. We observe
M�+0��0.767 for plot �A� and M�+0��0.826 for plot �B�. The
dotted curve is the cumulative Poisson distribution M�S�=1−e−S.
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volumes in Liouville measure. Therefore, we have consid-
ered the situation in which the eigenenergy sequence is a
superposition of infinitely many independent components,
and each of which gives an infinitesimal contribution to the
level statistics. Moreover, by developing the approach of
Makino et al. �19� into the statistics of higher order �long-
range� spectral fluctuations, the LNV of systems consisting
of infinitely many spectral components are obtained. The
LNV is characterized by the monotonically increasing func-
tions 	̄�k ;S�, k=0,1 ,2 , . . ., of the level-spacing S, where the
lowest order term 	̄�0;S� is associated with the NNLSD.
The property of the LNV is classified as follows: Case 1,
	̄�0; +
�=0 where the cumulative NNLSD is the Poisson
distribution, the LNV is the Poissonian �Poisson

2 �L�=L; case 2,
0�	̄�0; +
��1 where the cumulative NNLSD is the
asymptotic Poisson distribution, the LNV deviates from
�Poisson

2 �L� in such a way that the slope is greater than 1 and
approaches a number �1+2	̄�0; +
� as L→ +
; case 3,
	̄�0; +
�=1 where the cumulative NNLSD is the sub-
Poisson distribution, the LNV deviates from �Poisson

2 �L� in
such a way that the slope is greater than 1 and approaches a
number �3 as L→ +
. Therefore, we have shown that de-
viations from Poisson statistics �cases 2 and 3� are possibly
observed, not only in the property of NNLSD characterizing
short-range spectral fluctuation as shown in the work of
Makino et al. �19�, but also in the property of the LNV
characterizing the fluctuations of all ranges.

Note that cases 2 and 3 may arise when there is a strong
accumulation of levels, which is characterized by the singu-
lar NNLSD of individual components. Such accumulation
would be expected when there is a spatial symmetry or time-
reversal symmetry. One example is a rectangular billiard
shown in Sec. IV where the result shows case 2 in addition to
case 1, and an extremely slow approach to case 3. Similar
results due to a spatial symmetry are also shown in the
equilateral-triangular billiard �30,43�, torus billiard �29,18�,
and integrable Morse oscillator �31�. Another example is a
certain type of systems with the time-reversal symmetry
studied by Shnirelman �33�, Chirikov and Shepelyansky

�34�, and Frahm and Shepelyansky �35�. In this system, the
strong accumulation of energy levels, resulting from the time
reversibility, is reflected in the NNLSD as a sharp Shnire-
lman peak at small level spacings.

Rigorous results confirming the Berry-Tabor conjecture
�case 1� are also reported for a certain classically integrable
system. In the work of Marklof �13� and Eskin et al. �14�,
eigenvalue problems are reformulated as lattice point prob-
lems, and it is exactly proved under explicit diophantine con-
ditions that a two-point spectral correlation exhibits Poisson
statistics.

The periodic-orbit theory, applied for an integrable system
with degeneracy in orbit actions, gives a similar result. In the
work of Biswas et al. �32�, it was shown that the slope gav�L�
of the LNV �2�L�=gav�L�L represents the average degen-
eracy of actions of periodic orbits, which is greater than 1 for
the rectangular billiard with a rational ratio � of squared
sides. Since this property is qualitatively consistent with the
property of the limiting LNV �2.10� in cases 2 and 3, one
might expect to have the relation

gav�L� = 1 +
2

L



0

L

�
k=0

+


	̄�k;S�dS , �5.1�

which enables us to discuss the properties of the overall
NNLSD from the periodic-orbit theory. From Eqs. �5.1� and
�3.3�, we expect that the case 1 corresponds to the nondegen-
eracy of actions: gav�L�=1, while cases 2 and 3 correspond to
the degeneracy of actions gav�L��1. Therefore, we have
confirmed that cases 2 and 3 are closely related to the degen-
eracy in orbit actions. At the same time, we have only super-
ficially examined the possibility that the degeneracy of ac-
tions, induced by the symmetry, could be an essential factor
for the singularity of individual spectral components that
yields cases 2 and 3. This part should be investigated in
detail in a future work.

There is another approach similar to the one presented in
this paper, in which the LNV is derived in the limit of infi-
nitely many components �44�. The LNV is described by the
Dyson two-level cluster function Y2 as

�2�L� = L − 2

0

L

�L − S�Y2�S�dS . �5.2�

For spectral superposition, Y2 is described in terms of the
cluster function of individual components y2,n as in Pandey’s
work �41�,

Y2�S� = �
n=1

N

�n
2y2,n��nS� . �5.3�

Then, for the overall LNV, one has the convergence

lim
N→+


�2�L� = L + 2

0

L

c̄�S�dS �5.4�

with

FIG. 6. Numerical test of Eq. �4.5� for a square billiard ��=1�.
The solid line exhibits the theoretical prediction, which is valid in
the semiclassical limit �→ +
. In each plot, we used 107 eigenen-
ergy levels obtained from the unfolded energy range. The error bar
exhibits the energy range acquiring numerical data.
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c̄�S� = − lim
N→+


�
n=0

N

�n

0

�nS

y2,n�x�dx , �5.5�

where c̄�S�=0 corresponds to Poisson statistics and c̄�S��0
indicates deviations from Poisson statistics. Since y2,n is as-
sociated with the level-spacing distribution of individual
components as y2,n�x�=1−�k=0

+
 pn�k ;x�, c̄�S� is rewritten as

c̄�S� = lim
N→+


�
n=0

N

�n

0

�nS

�
k=0

+


pn�k;x�dx . �5.6�

When pn�k ;S� ,k=0,1 ,2 , . . ., are assumed to satisfy the com-
mutation relation �0

�nx�k=0
+
 pn�k ;S�dS=�k=0

+
 �0
�nxpn�k ;S�dS,

c̄�S� is described as c̄�S�=�k=0
+
 	̄�k ;S� and limit �5.4� is con-

sistent with the limit �2.10�.
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APPENDIX: DERIVATION OF EQS. (2.3) and (2.4)

We briefly show the detailed process to derive Eqs. �2.3�
and �2.4� from Eqs. �1.4�, �1.7�, and �1.8�. First, we rewrite
Eq. �1.3� as

�
k=0

+


�k − L�2EN�k;L� = �
k=0

+


k2EN�k;L� − L2, �A1�

where we have used the normalization conditions
�k=0

+
 EN�k ;L�=1 and �k=0
+
 kEN�k ;L�=L, which follow from

Eqs. �1.7� and �1.8�, and the relations k=�n=1
N kn and �n=1

N �n
=1 as

�
k=0

+


EN�k;L� = 
n=1

N

�
kn=0

+


en�kn;�nL� = 1, �A2�

�
k=0

+


kEN�k;L� = �
n=1

N

�
kn=0

+


knen�kn;�nL� 
i=1,i�n

N

�
ki=0

+


ei�ki;�iL�

= �
n=1

N

�nL · 1N−1 = L . �A3�

By using Eqs. �A2� and �A3�, �k=0
+
 k2EN�k ;L� on the right-

hand side of Eq. �A1� is calculated in a similar manner,

�
k=0

+


k2EN�k;L� = �
n=1

N

�
�i=1,i�n

N ki=0

+
 	 
i=1,i�n

N

ei�ki;�iL�� �
kn=0

+


kn
2en�kn;�nL� + �

n�i

N

�
kn=0

+


�
ki=0

+


knen�kn;�nL�kiei�ki;�iL�

= �
n=1

N 	�
kn=0

+


kn
2en�kn;�nL��	�

ki=0

+


ei�n�ki;�iL��N−1

�A4�

+ 	�
n=1

N

�
kn=0

+


knen�kn;�nL��2

− �
n=1

N 	�
kn=0

+


knen�kn;�nL��2

= �
n=1

N

�
kn=0

+


kn
2en�kn;�nL� + L2 − �

n=1

N

��nL�2. �A5�

Since the off-diagonal terms n� i vanish in the second equal-
ity, we have

�
k=0

+


k2EN�k;L� − L2 = �
n=1

N 	�
kn=0

+


kn
2en�kn;�nL� − ��nL�2�

= �
n=1

N

�
kn=0

+


�kn − �nL�2en�kn;�nL� . �A6�

Therefore, the overall LNV of the system with N indepen-
dent components is described as

�N
2 �L� = �

n=1

N

�n
2��nL� , �A7�

where �n
2 is the LNV of the spectral component,

�n
2��nL� = �

k=0

+


�k − �nL�2en�k;�nL� . �A8�
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